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ABSTRACT

s Reentry vehicle roll resonance due to small mass and aerodynamic
asymmetries is described analytically by a quasi-steady solution of the
three-degree-of-freedom moment equations of motion. The quasi-steady
analysis neglects oscillations in the vehicle orientation and angular rates
about average (quasi-steady) values of these parameters, whiéh change
slé»wly with time relative to the oscillations. The study tréats different
regimes of reentry vehicle roll resonance that have been identified through
computer solutions of the general equations of motion. Thesé include high
altitude roll lockin.and breakout due to a single mass asjmmetgy,, inter-
mediate and low altitude subresonance with a single asymmetry, :and spinup
and lockin to low altitude resonance from a compound asymmetry. Foi each
of the resonance regimes,;. analytical expressions are obtained that describe
the quasi~steady vehicle motion, and the results are found to be in good

. agreement with computer solutions of the equations of motion., The analytical
approximations provide a simple tool for predicting reentry vehicle dynamic

. behavior without requiring costly and time consuming machine computations.
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NOMENCLATURE

center-of-mass asymmetry
aerodynamic axial force coefficient
aerodynamic roll damping derivative
aerodynamic pitch damping-derivative
aerodynamic normal force dérivative
aerodynamic trim force coefficient
aerodynamic reference diameter
trim force

angular momentum; altitude
reference altitude for exponential atmosphere
pitch or yaw moment of inertia

roll moment-of inertia

static margin (distance of center of pressure aft of
center of mass)

location of trim force aft of center of mass

vehicle mass

moment
roll rate
critical roli rate,(i ): p)“z

dynamic pressure
aerodynamic reference area
time

vehicle velocity
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XY Z body-fixed axes ‘
XY, 2 inertial axes v
B ballistic coefficieﬁt, I0g
C AS .
Y path angle
5 Ca95¢
I
| c, asd’
€ roll damping coefficient, - —%——-
x
L. roll axis
n yaw axis
total angle of attack
CNaqSC
x roll moment coefficient, S S .
x s
CN qS1 .
X pitch. moment coefficient, —=—— Ia —
o inertia ratio, Ix/I 1
¥ y. qsd® N, .
v pitch damping coefficient, o |- Cm +—
q md
3 pitch axis -
P atmospheric density 'E
__ GCase ]
. trim roll moment coeffici¢nt, —— "
x q
l
C qSLt . {
L S trim pitch moment coefficient, i {
:
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Lot

Toll orientation relative to wind

. ¢ precession angle
;47’ W angular velocity

. Subscripts

T roll

" n yaw

' 3 pitch

‘ 4 oscillatory component
Superscripgt«sA - s .
. time derivative
— quasi-steady component
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I, INTRODUCTION

It has been known for some time that missiles or projectiles -with slight
configurational asymmetries .can .exhibit .erratic roll behavior due to gyroscopic
-coupling -of roll and pitch:inotions (roll resonance) at.or near the natural pitch
frequency of the missile (Refs. 1 and 2). ‘More recently, ‘with the .advent of
smaller :and higher ‘ballistic coefficient reentry vehicles, similar erratic
behavior has ‘been observed-that can have :adverse .and even catastrophic
.effects 'on the-vehicle motion diring reentry (Refs. 3 :and 4).

Because of the Complexity «of the equations .of motion when gyroscopic
coupling is involved, there :are féew analytical treatments .of roll resonance,
:and much of what is known has been obtained from computer solutions :of the
general equations .of motion. Such-studies provide detailed information on
the motions :and trajectories of specific vehicles but, unfortunately, do not
lend themselves to-identifying in .a .scientific manner the pertinent parameters
that contribute to the roll resonance phenomena. The purpose of:the present

study is to identify analytically the most important of these parameters

through:a solution :of :a :simple set .of .equations .embodying ‘the iessential

features of reentry vehicle dynamics. The results so .obtained provide a
:simple tool for predicting the occurrence and severity of reentry-vehicle roll
rTesonance. as a function of vehicle configuration, aerodynamic, and trajectory
parameters. |

‘The study treats, iseparately, three regimes of resonance ‘identified in
Ref., 4, in the order in which they might be encountered by a typical reentry
vehicle. First, the high altitude resonance ‘when the vehicle roil rate first
interacts with the critical roll rate is .examined, :and the conditions necessary
for roll lockin :and breakout .due to a single mass asymmetry are described.
Next, the steady subresonant condition exhibited by a vehicle with a single
mass :asymmetry when the roll rate lies below the critical roll rate is
described -analytically, .and the results are compared with computer solutions

of the three-degree-of-freedom equations of motion. Finally, :an approximate
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method is presented for predicting the transient roll spinup to resonance
and concomitant angle-cf-attack divergence induced by a compound asym-
metry, 'and these results are also compaféél with compuater solutions of the
equations of motion. )
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JI. COORDINATES AND EQUATIONS OF MOTION

It is convenient for the purpose of .analysis to consider only three-
degree-of-freedom trotational motion, since thé roll resonance phenomenon
is basically gyroscopic in nature. There is, however, anormal force con-
tribution to pitch or yaw damping from lateral motion of the center of mass,
which can be accounted for in specifying the aerodynamic moments, so that
the three moment equations effectively account for five-degree-of-freedom
motion for an axisymmetric vehicle.

The rotational motion is described in terms of the Euler angles b, ¢,
6, as shown in Figure {, which.describe the position of the body-ﬁxed axes
X, y, z relative to a set of inertial axes X, Y, Z. It is assumed that the inertial
frame of reference is moving with the vehicle center of mass along the velocity
vector, which coincides with the direction of the X-axis, and that the vehicle
axis is the body-fixed axis x.or {.. The angles §, ¢, 6, which are rotations
about the axes X, x, §, respectively, then represent precession about the
velocity vector, roll orientation relative to the wind, and total angle of attack,
respectively., The mutually perpendicula:* axes &, m, §, which precess about
the velocity vector, are the pitch, yaw, and roll axes, respectivély, where
the pitch plane is defined as the plafe of total angle of attack. These axes
differ from the usual body-fixed axes x, y, % in that the pitch axis £ (the line
of nodes in the Eulerian system) is always perpendicular to the direction X
of the velocity vector, thereby defining the plane of the total angle of attack,
whereas the body-fixed axes y and z rotate in this system about the roll
axis (x or {) with angular rate q.S

If the principal moments of inertia about the §, n, { axes are I, I, I,
respectively (pitch, yaw, roll), the angular velocities of the §, 1, §{ axes

and the angular moinentum about them are (Ref. 5)
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= l wcavenanieiter MR - -
s - ~ )
wg = ] hg = I8 ’ ‘
v = Yging 'hn =.<1¢ sin 0 } (1)
Q;=\i‘cos 0 li; :I*(g's-l-(l»‘coi 9)" ’

where wg and inn are the pitch and yaw rates, respectively, and the roll rate ,
is the sum

p=¢+¥Ycos® . (2)
The moment equation of motion is
M=h+woxh |, (3)

which, from Eq. (1) with the definition, Eq. (2‘),/ has the components

8 Y

M, = 16 + Ipdsine . 19 4ixi 6 cos 0
_ i [d N : o o . *

M"L_ I at (¢ 8in @) + I8V cos 6 - pre ? (4)
-1 4

M¢ Ix at ) .

The moments ‘Mg, M‘n, 'ML are the aerodynamic pitch,. ya.v;r, and roll
moments, respectively, acting on the vehicle.
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. SINGLE MASS ASYMMETRY

A. MOCMENT EQUATIONS

It will be assumed initially that the only asymmetry that givés rise to.
pitch roll.coupling. is.a displacement of the ‘vehicle center of mass from the
axis of symmetry (center of pressure) of-the vehicle and that this displace-
ment is small enough that the resulting cross produ¢ts of inertia can be
ignored., Denoting this displacement c, as.shown in Figure 2, we can write
the aerodynamic moments in terms. of normal and axml force components for

an otherwise axially symmetric veh:.cle1

'C
N
9.__ °’ ;
Mg CN qS40 +. CAch cos ¢ + d 0
CN I .
Mn-CAqSC sin ¢+9'——— C‘»m ——-9'2— ¢ sin6 ? (5)
q md
C qu P
= - _B____.
MQ CN gS6c¢ sin ¢ + )

The term Cy I/md2 in the first two of Eqs. (5) is the usual normal force
damping termfrom lateral motion of the vehicle center of mass. It can be
shown for an axisymmetric vehicle that the lateral motions are proportional
to pitch and yaw rotations about a point a distance I/m! ahead of the center
of mass. Thus the three resulting moment equations account for lateral
translation of the vehicle and effectively describe five-degree-of-freedom
motion.

|
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where C. and C tp are pitch dnd roll damping derivatives, respectively,
and the angle ¢ describing the roll orientation relative to the wind is zero
in the statically stable position when the center of pressure is on the leeward
side of the center of mass. Negative ¢ produces a positive roll torque and
positive ¢ produces a negative roll torque., It is shown in Section III-B that
roll reégonance is a: condition during which ¢ oscillates-about a nonzero value
of ¢ producing a net roll torque. The magnitude and direction of this torque
are strongly influenced.by the magnitude and time rate of change of the dynamic
pressure. The oscillation in ¢ about a steady value or one slowly varyi‘.ng in
time is defined here ‘as lunar motion in that a certain meridian. of the vehicle
is preferentially facing intothe wind. From this definition, as is shown in
Section III-B, lunar motion is a necesgsary condition for resonance.
Substituting Eqs. (5) in Eqs. (4) and dividing the first two equations
by I and the third b‘y_Ix, we can write the equations of motion

-A6+ &cos ¢-vB =8+ p.pi' sin 0 - Jizsin 6 cos 6 w
6sin¢-v¢~sin’e=§t-'(ti: gin 6) + 0% cos 0 - ppd ) (6)
~%0.8in-¢--¢€p. =%f— )

where the coefficients are

CNaqSI CNach }
L T
X
2
C,qS Cg qSd
5= 2 e= %)
I ILu
X
C, I
2 N I
T . B
-9-
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The sign convention is such that for a statically stable vehicle with positive

damping (C__ , C, < 0), all of the coefficients will-be positive.

1

q P , . _

B. QUASI-STEADY SOLUTION FOR HIGH ALTITUDE -
ROLL LOCKIN AND BREAKOUT

It will be assumed that the vehicle motxon during reentry, described
by [(t), ¢(t), 8{t)], is of the form

[y, 96,0 0] = [B(e), 96 B(0)] + [y, @), 9,010,601 ,  (8)

where [{(t), ¢(t), 8(t)] represents a quasi-steady component that varies
relatively slowly with time (of the order of the dynamic pressure) and
(¥ +(t), ¢+(t), 0 +(t)] represents an oscillation of higher frequency about the
quasi-gteady values. It is of interestto examine solutions to the equations
of motion for the quasi-steady components only.

Making the small angle approximations sin 6 = 0, cos 8 = 1, neglecting
pitch damping v, and ignoring the term 6 cos ¢, which is quite-small except

at angles of attack.near static-trim, we can. write the first of Eqs.. (6) in the

form -
++ppb-%0=0 . (9)

This equation describes a nonlinear oscillation in 6 about a nonzero quasi-
steady value 8, since 0, by definitionp is always positive. The quasi-steady
values § and p corresponding to 8 are those satisfying the equation

N+ ppd-92 =0 (10)

Wixich makes 6 in Eq. (9) zero. Since, in general, p <1, the precession rate
¥ from Eq. (10) is apprommately equal to :!.-k1 /2 » the pitch natural frequency
of the vehicle. From the defmitlon, Eq. (7), \ / is proportional to the
square root of the dynamic pressure and.is a relatively slowly varying function
of time,

-0




Similarly, we can wnte the thxrd of Eqs. (6), usmg the defmxtmn of p
from Eq. (2) with the auumptxon cos 0 = 1, in the form

$+x08in ¢=cp -;%;‘--.J‘ g (11)

which, under certain conditions when the right hand side is a: slowly varying
function of time, represents a nonlinear oscillation in ¢ about the nonzero

quasi-steady value ¢ satisfying the equa‘ﬁ:'ion

€

d

3-1%-( -a) - 12)

Fram Eqs. (2) and (10) with the assumiption of.small-6,. the existence of a
quasi-steady value ¢ such that d¢/dt = 0 requires that

1/2
|.L)i' =+p, . (13)

p= $”*(§1).\.

Eq. (13) is the lunar motion contiition of roll resonance during which the
roll and precession rates are equal to-the critical roll rate Pe which is
slightly greater than the natural pitch frequency A 1/2 of the vehJ.cle. The
resonance condition can exist only when sin ¢ given by

o= _ 1 c
sin ¢ -'-'-‘E tipcﬁ: T (14)
is real, i.e., when
|sing| <4 - _(15)




e

Hence, the criterion, Eq. (15), with ¢ defmed by Eq. (14), is a necessary
condition for resonance for a vehicle ha.vmg a smgle mass asymmetry. Re-
writing « in Eq. (14) in terms of P using the definitions, Eqs. ({3) and (7),

o we can write sin ¢ in the form

(t/e) 1,/ -1) . dp,
(:bep ¥ )

sin;,- i - (1~6)'"
« p:/% dt :

Since roll damping ¢ is generally quite small, sin ‘¢ from Eq. (16) is approxi-
mately proportional:to the slope of the critical roll rate and is inversely
proportional to the square of the critical roll rate and. angle of attack.

If the vehicle has an initial exoatmospheric roll rate, say P, then at

some point in the trajectory, say t;» the vehicle roll rate must intersect the
critical roll rate curve, as shown in Figure 3.
77N
/
B / "
7 cificaL
/ ROLL RATE 1
.{
0 <
ROLL RATE, p
Po E—— o '
0 'l ' |
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Figure 3. High Altitude Roll Resonance *
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At this point the vehicle will lock into reaox‘npce', -provided that the criterion,
Eq. {15), is satisfied and that the vehicle has the proper roll orientation with
respect to the‘wind; i.e., the angle 9n’ms‘t be such that the induced roll torque
has the same sense as the critical roll acceleration (e. g iff)c is positive,
then ¢ as defined in Figure 2 must be negative to produce a positive roll torque).
Hence, the sin ¢ criterion, Eq. (15), is a necessary, but not sufficient, con-
dition for resonance in that lockin depends also on the phasing of ¢ as the roll
rate approaches critical. - However, if lockinh does occur,. then the vehicle
must break out of résonance when sih ¢ is no longer real, which will.generally
occur at some later point; ‘such as t, in Figure 3, when fxc is large and © has
damped to a sufficiently small value: The breakout point has particular
physical significance. Referring to Figure 2 and the third of Eqgs. ‘6, the roll
torque wh:.ch produces the roll acceleratlon pis proportmna.l to the product
9 sin ¢. When ® becomes sufficiently small the maximum possible roll
torqie, corresponding to ¢ = 90 deg, is insufficient to increase p at an
average rate equal to the time rate of change of the critical roll rate, and
resonance is no longer posgibléa |

In order to evaluate sin? from Eq. (16), we require a knowledge of the
angle-of-attack convergence and the dynamic pressure history, which
determines the magnitude and slope of.the critical roll rate. The dynamic
pressure is approximated assuming an exponential atmosphere with constant
path angle, the details of which,are discussed in Appendix A. The angle-of-
attack convergence is obtained‘:from a quasi-steady solution of the equations
of motion, which'is summarized in Appendix B. Using these results, we can

now express the sin_oi criterion, Eq. (16), in.terms of the vehicle and tra-

jectory parameters.

Att=t in Figure 3, where the roll rate first':ihtersegts the critical
curve, the roll rate is approximately equal to the exoatmospheric value Py
and the angle of attack has the approximate value given by Eq. (B-13),
Appendix B. Ignoring roll damping ¢ and substitutiixg sin? = @ from
Eq. (B-13) with the slope. dp, jdt from Eq. (A-16), AppendnxA in Eq. (16),
we obtain for sin ¢,

s
'

-13.




o 1\ B2 (Py— Py) fooB B \1/2 exp[(1/2)(b - a)pi~(1/2)bp]
|sin ¢1| ‘-(1}: )( ) pr (p. ) ’ sme

®

(17)

which, depending on whether or mot;1 is real, i.e., |sin 71“ <4, isan
approximate criterion for determining r6ll Tockin. .Assuming that lockin
does occur, the breakout point can also be estimated using ¥q. (16).

Egquation (B-15), Appendix B, describes the angle-of-attack convergence
while the vehicle is in resonance. Substituting this expression for @ in
Eq. (16), using the values for Pe and dp /dt from Appendix A; as before,

we obtain for the sin ¢ expression during lockin

ot /2 L=\ A e, - 6\ expl®/2)(p - py) - (2/4)F]
Al

. Yo
18in ¢‘ = T ’
l 23,73 ( ) ( CN SI 'pi“/4 [B - 4 ()] 1/2
(18)
where .
. 2Ae%P - colo-o ) .
¢ (p)= 255 %%[D(«/a‘p.% e et Pr’,DmTf)]
aa J
-a-Ei'/z { - pi 1./2 *-&(P Pi) (19
1/2 o (19)
2172 WP
a=—_H w
T fsiny
.2 . N
C_ d Cc
b= HS - mq 4 Nu i
YT 2 8iny Ir m - L
a=b -,-% | “ o ‘ ; (20)
1/2
1C Cx S gu H “bp,
A= 4 ! 2 e |
Cn \1-1%x/ 2vZpsiny ]
( -14-
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and D(x) is Dawson's integral defined by

2 2
D(x)=e™™ fx et at
()

v

for which tabular values: ai;ev available (see, for example, R;f, 6). Breakout
must occur when [sin ¢| from Eq. (18) approaches unity, as shown in
Figure 3.

Figure 4 shows a jlct of sin ¢ fromEq. (18) for a typical reentry vehicle,
for.different values of damping, measured frorm the point at which the roll rate.
first intersects the critical curve, Pg = P Figure 5 shows a comparison of
roll rates computed from a numerical integraticn of Eqs. (6), with the.
extimated breakout pdints based on the sin ; criterion of Eq. (15), for the
values plotted in. Figure 4. Aiso shown in Figure 5 is a comparison of the
computed angle-of-attack history with the quasi-steady approximation of
Appendix B for C_ = -4. It is seen that for greater damping, breakout
occurs earlier, This is a consequence of the increased angle-of-attack
convergence, which causes |sin | to increase more rapidly to its limiting
value of unity. It is also seen tha.t,t’:he greater the damping, the more accurately
the breakout point is predicted. This is a consequence of the assumption of
quasi-steady motion. It was shown that the vehicle breaks dut of resonance
when the maximum roll moment corresponding to ; =90 deg is insufficient
to accelerate the roll at the critical roll acceleration. Since the average
moment is computed based on the average moment arm c sin ¢ (Figure 2),
the moment will be overestimated, depending on the amplitude of the ¢ oscil-

lation, since the average value of sin ¢ at ¢ = 90 deg is less than unity; i.e.,

sin ¢ <sin ¢ 'The lower the damping, thé greater the amplitude of oscillation

will be, which accounts for the discrepancies of Figure 5.

C. SUBRESONANT CONDITION .

Following breakout, which is accompanied by a perturbation in the
vehicle orientation and angular rates, and in the absence of other asymmetries,

-15-
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the. roll rate has been observed to become almost constant, decreasing
slightly, and a condition of steady lunar motion exists at very small angle
of attack. This is a stable subresonant condition that, owing to its steady
nature, can be described quite accurately by a quasi-steady solution of the
equations of motion.’

Assuming that the angle of attack and agguiaf ‘rates. remain.constant,
i.e., O =0and 6= y = f =0, and the small a.nél'e -approximations are valid,

we can write the first:two of Eqs. (6) in the form

6 cos ¢ - (A tpiti) - 4;3)@ =0
6sing-vb6 =0 | (21)
where the bars, as before, denote quasi-steady values. Since ® from

Eqs. (21) must also be slowly varying, which is the lunar r;}ot'i;owx; condition

d/dt ; =0ormns= ‘1‘, Eqs. (21) may be written

_ VDo
tan § = ———— (22)
7\_[1 “(py/p.) ]

and’

g bcos¥ : (23)
x[i - (p*/pc)z]

where p, represents the almost constant value of p after breakout. For p,
sufficiently removed from p_, as in Figure 5, tan¢= ¢ <1, cos ¢ =1, and

we can write Eq. (23) in the form

0

trim

=t - (pylp)” (24)

-18-
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where etrim = §/\ ic the static or nonrolling trim angle of attack due to the

mass asymmetry, Thus, it is seen that this trim is amplified by the factor
2] -1
[t - ulee’]

is shown in Section IV-B that an aerodynamic trim in con;unctxon with the

’ which is 'chara'cterictié of a near-‘-resbnant condition. It

mass asymmetry, which can cause spinup into low altitude resonance, is
amplified by this- same factor during spinup.

The 'slight roll deceleration during the subresonant condition may be
estimated from the third of Eqa. (6) upon substitution of sin ¢ % tan ¢ from
Eq. (22) and 8 from Eq. (23), which gives

’ xﬁvp;*
L

. (25)

1.3*"'

This deceleration is found to be quite small except as Py — P¢

Figure 6 shows a comparison of the quasi-steady angle of attack from
Eq. (24) with that obtained from a computer solution of the equations of
motion, for the case C ing = -4 diécque,d previouily: Also.shown in the
figure are the computed roll rate and quasi-steady approximation bat :d.on
the breakout roll rate from Figure 5 w1th a-numerical integration of
Eq. (25).
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Figure 6. Comparison of Quasi-Steady Approximation and Computer
Calculation of Angle-of-Attack and Roll Rate during Subresonance
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. IV. COMPOUND ASYMMETRY

P
-

A. MOMENT EQUATIONS WITH/AERODYNAMIC TRIM

It has been shown (Ref. 4) that if a relatively small aerodynamic trim
force develops at lower altitude that acts out of the plane of:the center-of-
mass asymmetry, a roll acceleration will be produced that can be sufficient
to spin the vehicle into low altitude resonance. This trim can be represented
by the normal force Ft oriented at an angle ?, with respect to the plane of
the center-of-mass asymmetry, as shown in Figure 7, and acting at a dis-
tance L aft (or fore)-of the center of mass. Referring to Figure 2 and
defmmg a tnm force coefficient C = F /qS, we write the resulting p1tch,

yaw, and roll moments in the form

Mg = thSLtcos (¢ + ¢°)
M, = ctqs’Ltsip (p+¢,) : (26)
Mg = -C,qSc sin ¢_ I :1

When these terms are added to the moments of Eq. (5), the equations of

motion, Eqs. (6), become o

3 . M e \
T cos (¢ + ¢6) -N0+ b8cos ¢-vD=8 +«p.p\|Jsi_>x‘; 0 -¢2sin6 cos 6

Tsin(¢+¢o)-v(psine=dit(¢sine)+é¢cose-ppé 5 (27)

-osin ¢ - x0 8in ¢ - €p. = —B
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where v and o-are defined by

- C.qSL, C.qSc
T —t'I—t' ~ 0= 11: . (28)
X)

When $, = +90 deg, a :elativgly small normal trim force acting at a sufficient
distance Lt from the center of mass (at the fore or aft ends of the vehicle,

for example) will cause the roll to accelerate from its relatively constant
subresonant value to the-critical value, as shown in Figure 8. On reaching
the critical roll rate the vehicle will once again lock into resonance with a
subsequent divergence in angle of attack and increase in lateral loading. The
.s8ame trim introduced at higher altitude prior to breakout from resonance

would cause the vehicie.to remain locked into resonance.

o,

ROLL RATE

Figure 8. Spinup to Low Altitude Resonance from
Compound Asymmetry
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The roll and angle-of-attack behavior during spinup and resonance
‘ can be obtained from an approximate quasi-steady solution of Eqs. (27), -
| similar to that used in treating the high-aititude resonance problem. It is
convenient to treat the spinup and resonance phases separately. .

11
e+ o

B. SPINUP TO RESONANCE

The mecharism for spinup to low altitude resonance with the presence
of a body-fixed trim-is similar to the roll acceleration during high altitude
resonance due to a single mass asymmetry. In both cases, the roll torque
is the normal force from angle of é.t,tack acting on the center-of-mass
asymmetry as its moment arm. During high altitude resonance, the angle
of attack is the residual frqmathe“ eroatmospheric reentry value, ‘which has
not completely converged;, whereas during spinup, the angle of attack is

induced by the aerodynamic trim., In order that the roll torque be sustained,

the vehicle must have a preferential roll oriéntation relative to the wind,
which is the lunar motion condition ¢ = 0.

Again, if we consider only the quasi-steady vehicle motion by neglecting .
the angle-of-attack oscillations exemplified by o and 8, and make the small ,
angle approximations as before, the lunar motion condition requires that
§ =P, 'and we can write Eqs. (27) as

Tcos (§+¢;) - NG+ 6cos §= po(t W) T

i N
Tein (8 4g) - vpB=0p ) (29) d
-Gsin¢o".§8in_¢-=; ,

We can solve these equations approximately for the quasi-steady values p
and 6, for the case ¢, = 490 deg, by neglecting the terms 6 and o, which are, m

in general, small relative to other terms in the respective equations. It is

shown in Section IV-C, by a comparison of the results so obtained i.%th a
numerical integration of Eqs. (27), that.this is a good assumption f( r typical y
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T =
amar e R : §
vehicle and tra;ectory parameéters, Using the definition of Be? Eq. (13),
- we can then reduce Eqs. (29) to
* ~T8in ¢ X[i-(p/p )]9
Tcos ¢= 3 , (30)
-x0 gin ; =p .
By eliminating'® and ¢ between these equations using the identity
- sin2; + cosZ;= i, we obtain the nonlinear differential equation forﬂf
. 3
Pt = T : (31)
A [1 - (p/p.) ] [ - B/py) ]
This is a cubic equation in p,. with the second order term missing, which has
the exact solution )
. 1/2 1/3 4 1/2 1/241/3
s 5:(%") [x+(1+X)1/2] (—"%"I—) [-(1+X) ] ,
(32)
where
X = 33k . (33)

2X[t- @rpg)]”

For typical vehicle and trajectory parameters, X <1 for |p/p | £0.9, and
Eq. (32) can be expanded in powers of X, which yields the simple result
KT

M- @0

-25-
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This indicates that thezsecond termin Eq. (31) can be neglected for
| P, /p |= 0.9. Smcep and the coefficients «, T, :and \ are proportional to

the dynamm Ppressure, wl‘uc"h is time dependent, Eg. (34) can be solved for
P by a.simple numerical integration. Substituting Eq. (34) in Egs. {30)s
we find the corresponding angle-of-attack behavior during spinup to be-

B (35)
1 - (p/z,)

This is the same trim amplification factor derived in :Section 1II-C for the

subresonance ‘condition with a single mass asymmetry.

C. LOW.ALTITUDE RESONANCE AND ANGLE-OF-
ATTACK DIVERGENCE

As the roll rate apprcaches the critical value Egs. (34) and (35) no
longer apply, and it-is essential to include pitch-damping v to obtain the roll *
‘behavior during resonance: As with the usual resonance phenomenon, the 7
angle of attack exhibits a singularity in the al'sence of damping as p—p, .- Co (
Therefore, retaining v, we may write Eqgs. "(2‘9/)*#1"1‘th b = ‘90 deg ‘in''the form - ,

-2

6 .cos =T 8in ¢ = })L(i - 22-) '
P..

T COS @ = (vp4+P)® ' /36)

- - ) :s"in';g_b; ; ) B

Asp =P the first of Eqs. (36) gives tan ¢- 6T = {C, /Ct)(c//L ), ‘which,
in genera;l , is a very small quant1ty for trim moments (C ) of :sufficient
magnitude to spin the vehicle into resonance before impact. 'Consequently,
sin ;-—;ra.nd cos ¢ —~1, which gives for ;'é-*during resonance, from the

second of Egqs. (36),

T (37)

-2b-
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Noting that the nonrolling trim angle of attack O‘t due to the trim T is T/),

we find that.the amplification of the nonrolling trim '5'/9t during resonance is

2
g (d-wmp,
22—l (38)

When i’c = 0, at peak dyramic pressure, this expression reduces to

9 [(I - I,S)CNal]i/Z 232 (39)
% | e [(cNallmdz)]d3 ‘

which, with the exception of I in place of I - Ix in the denominator, is the
identical expression derived in Ref. 4 using linear theory. The trim
amplification factor, Eq. (38), includes the depe:dence of trim amplification
on the siope of the critical roll rate, - -

The’ foregoing results provide a simple means for predicting the roll
‘acceleration and -angle-of-attack divergence as a function of time (or altitude)
after the introduction of an aerodynamic trim. Because of the dependence
of the angle of attack during resonance on the slope of the critical roll rate
curve and on pitch-damping (which is -proportional to vehicle velocity), the
‘maximum angle of attack will depend on the altitude at which the vehicle
sping into resonance. The approximate angle-of-attack behavior can be
construéted from the results of Eqs. (35) and (37).

Figure 9 shows a typical comiparison of the quasi-steady approxima-
tion with a computer calculation of the roll acceleration to resonance after
the introduction of a body-fixed aerodynamic trim 90 deg out of the plane of
the center-of-mass asymmetry. Figure 10 shows a similar comparison of
the: corresponding angle-of-attack divergence.
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V. CONCLUSIONS

]

PR Wt s

. It has been demonstrated that reentry vehicle roil resonance can be
described by a solution of the moment equations of motion for the quasi-steady
or average values of the vehicle orientation and angular rates, without regard
for perturbations in the motion about these values. This results in a con-
siderable simplification of the equations of motion.

&

DR
EN

‘The analysis has been applied to different regimes of reentry vehicle
roll resonance behavior, previously identified through computer solutions
of the general equations of motion for particular vehicles and trajectories.
The analytical results provide a simple tool for studying, parametrically,
reentry vehicle motion for different vehicle configurations and trajectories,
and they serve to identify the important parameters and their relative
influences on roll resonance phenomena,

It should be possible to extend the analysis to include other aerodyhamic
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-

+  forces, 'such as pure roll torques or forces due to ablation, or mechanically

ﬁ induced forces that might be desirable for control of the vehicle motion. !
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APPENDIX A “Z =i ~Z ST~

CRITICAL ROLL RATE APPROXIMATION FOR
. EXPONENTIAL-ATMOSPHERE

Using the approach of Allen and Eggers, 2 we can relate the critical
roll:rate-and its derivatives to vehicle and trajectory parameters as follows.
It is assumed that atmospheric iien’sit'y, p varies exponentially with altitude h
according to

-h/H
p=peB/

8 ’ (A-1)

where Pa and H are constants. Neglecting acceleration from gravit}" and
assuming a constant axial force coefficient C A® We can write the vehicle

deceleration from drag in the form N

2
du _ pgu A <
Tdt T z% (A=2)

where P is the ballistic coefficient defined by

p= (A-3)
CAS
For a constant path.angle y, the vertical descent rate is
‘dh
- 'th' = u Bin 6 . (A-4)

ZJ' H. Allen and A. ,J. Eggers, Jr., A Study of The Motion and Aerodynamic

Hea.tm_g of Ballistic Missiles Entering the Earth's Atmosphere at High Super-

somc Speeds, NACA Report No. 1381 (1958),
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Differentiating Eq. (A-1) with respect to time and making use of Eq. (A-4),
we find that the rate at which density increases during descent is

a |
b S (a-5)

Eliminating t between Eqs. (A-2) and (A-5), we find that the velocity change

with dengity, in terms of the trajectory parameter

a 53—5%—\( , (A-6)

is

g—% =% (A-T7)
which may be integrated to give
u‘=‘u°e-(a‘/2)lp , (A_s)

where u is the reefitry-velocity.
The dynamic pressure as a function of density is then

1 2 {1 . 2 -
q=gzpu=zpuel | (A-9)
which has a maximum value
2
Y% .
“"‘q* ='2—a'€ s (A-10)
A-2

&

[ 5}

Q
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.A | T -+ ~ ~
;kq\ MV i g = __"‘j: . &
at an altitude . | |
; N |
e bR Tty
{} where the density is
{ 1
' e (A-12)
and the velocity is
u, = uO/N/; . (A-13)

The critical roll rate, p_, defined by

2
CNaqSl 1/
Re=\T-1_ ’ (A-14)

may now be expressed as a function of atmospheric density and trajectory

parameters by substituting for q from Eq. (A-9), which gives

CN Sty 1/2 472 -(a)2)
_ o 9 -{a [
Pc "'( I - .Ix ) Ji P e . (A-i 5)

The time rate of change of P’ ‘irl\xich is also of interest, 'is found to be

(,lpc 'QN, St \1/2 guipi /Z-e-ap
= ———— (P = P) . (A-16)
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The atmospheric density is related to altitude through Eq. (A-1) and may

be expréssed as a function of time<through the expression *
d Pl —(a/2)p._. *
do . 2o @Pginy (A-17)

which may be integrated to give

j 2{2 2
| H o L @R -p) @) p" - ol)
t-to—uosiny lnp°+ 1. 1! + 7 2 4 .o .

(A-18)
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APPENDIX B

ANGLE-OF-ATTACK CONVERGENCE DURING ROLL LOCKIN

We can estimate the angle-of-attack convergence through a quasi-

-gteady solution of the equations of motion,

- X0 + & cos ¢-vé=§+pp:|’sin6-‘¢zsinécosa

6§18 ¢ - vib 8in 6 = S (b sin 0).+ 8 cos © - upb (B-1)
R d

--k98m¢-¢p=-(-1-tE ’

using the exponential atmospheric density approximation discussed in
Appendix A. During resonance, the vehicle is in a state of lunar motion, and,
for small 6, the quasi-steady or average values of p andq‘ are equal to the
critical roll rate; i.e., 7

3*‘3"=p¢ . (B-2)

For a vehicle with a largeé pitch-to-roll inértia ratio, W is stall compared

with cos 0, and the term ppé in ?:he second of Eqs. (A-1) can be neglected
compared with 8¥ cos 6. We can then write this equation, with the condition
of Eq. (B-2), in the form

68inB ging - vpcsinz'e' = a‘-‘t- (pcsinzﬁ) . (B-3)

B-{
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If we substitute the expression for sin ¢ from the third of Eqs. (B-1) into
Eq. (B-3), with the small 8 approximation and the conditions Eq. (B-2),
Eq. (B-3) becomes

d
d . 2 2= _&f P
It (pcum 5') + vp 8in 0= -—;(epc.-i- -aTc-) . (B-4)

This equation can now be integrated for pcsinzﬁ' and has the familiar

T

solution. -
- . . ’
PCSinz-e-= GXP["[ v(t’) dt'] (pCSinZ-é.)trt --f- f exp[f v(t”) dt]
! b7y t
+ Ipe at’
X\epe * g | (B-5)

where time t = ty corresponds-to the point at which the vehicle first locks
into resonance, i.e., when the roll rate p intersects the critical curve P
The angle of attack 0 at this point can be  estimated from the exoatmospheric

vehicle motion as follows.

Before reentry, in the absence of external moments and pitch accelera-

tion 8, the vehicle-will have some. exoatmospheric roll and precession motio

18 and il.io at angle of attack 60, which are gyroscopically coupled according to 1

W ERy
Yorsmo, (8-6)

Since 4‘0 and P, will, in general, be unequal, the position of the windward

meridian ¢ will rotate continuously about the véhicle, .and a steady roll torque

cawnot persist as it would in the case of lunar motion, However, there can be

a net roll torque depending on the phasing of ¢ relative to angle-of-attack

oscillations 8. Nevertheless, in view of the small magnitude of the aerodynamic J
{

ns
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forces at these altitudes, it is assumed that p = B, = constant until the roll
rate intersects the critical curve. If we neglect roll damping ¢, the third of
Egs. (B-1) requires that sin ¢ = constant. Since, from consideratiocns of

ot the quasi-steady solution of the pitch moment equation discussed in the body
of this report, the quasi-steady precession rate ¥ will be equal to the natural
. pitch frequency Xi / z, which is very nearly P Eq. (B-3) with:sin ¢=0
describes the angle-of-attack::onvergence prior to high altitude resonance.
A Integrating this equation from 0 to t, we obtain
; e i 2 t ,
! p 5in°8 = ¥ sin®0_ exp- f v(t) at , Ostst .
‘ 0
(B-7)
We can evaluate the integrals of Eqs. (B-5) and (B-7) using the expo-
nential atmosphere approximations for q and u derived in Appendix A. Changing
s the independent variable from t to p, using the relation
pu R
- . dp_""o -(a/2)p_. ~
X, at - H e sin y (B-8)

derived in Appendix A, and neglecting roll damping in Eq. (B-5), we find
that the integrals are

t P B
[venar=n [Ta=1e -p) (B-9)
0 Po

[

t t’ d P
..8_ ! . ”" P’ pC - f ap i d
1

4 1 [

~a(p-p P\L/2 ~alp-pg

1) , a 12 )'l
D(A/a—p'i)-;-‘%n-z-i-<-p—) e It
(B-10)

2Ae%P

ad_i /2
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where

amgEL_ |
Zp sin Y X 2%
¢ ¢y
b= HS q + a
2 sin y i m
>
aEb-%
we, (On SN2 um
_TA a o -bp
A=g = e PPt (B-11)
N, x 2N2Bsiny il
: J
and D(x) is Dawson!s integral defined by
rx tZ
D(x)=¢"" f e dt , (B-12) >
0

for which tabular+values are available. 3 The angle-of-attack expzessions,
Eqs. (B-5) and (B-7), can now be written in terms of these résults. oOf
particular interest is the angle of attack when-the roll rate first intersects
the critical curve att =t 1 At this point the critical roll rate will equal
the exoatmospheric value po, which was assumed to remain constant in the
interval 0 s t = t. Therefore, fromr Eq. (B-7) att = t,, using the relation,
. Eq. «(6), werobtain

B 1/2
3in B, =(35%T;) sing -exp[- (b/2)(p, - p )] .  (B-13)

3~See, for e:‘:ample, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Applied ‘Mathematics Series 55, National
Bureau of Standards (1964).
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Fort> t‘i’ noting from Eq. (B-13) that

- . 2
R 2_) _—}lpo_sm 9'0 -b(pl'-po)

(p 8in @) . = e ;

c 1:—t:1 cos OO

i
o

(B-14)

We can write Eq. (B-5) in the form

1/4/1-T \1/4 1/2

= 2 [B - §(p)] { b .

#in® =17 (CN» s’;) 174 e"P[(E) (a - 2l "("’2’)"1] P B>
0. a

(B=15)

which describes the angle-of-attack convergence during resonance.
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